8,136 research outputs found

    From Multi-Keyholes to Measure of Correlation and Power Imbalance in MIMO Channels: Outage Capacity Analysis

    Full text link
    An information-theoretic analysis of a multi-keyhole channel, which includes a number of statistically independent keyholes with possibly different correlation matrices, is given. When the number of keyholes or/and the number of Tx/Rx antennas is large, there is an equivalent Rayleigh-fading channel such that the outage capacities of both channels are asymptotically equal. In the case of a large number of antennas and for a broad class of fading distributions, the instantaneous capacity is shown to be asymptotically Gaussian in distribution, and compact, closed-form expressions for the mean and variance are given. Motivated by the asymptotic analysis, a simple, full-ordering scalar measure of spatial correlation and power imbalance in MIMO channels is introduced, which quantifies the negative impact of these two factors on the outage capacity in a simple and well-tractable way. It does not require the eigenvalue decomposition, and has the full-ordering property. The size-asymptotic results are used to prove Telatar's conjecture for semi-correlated multi-keyhole and Rayleigh channels. Since the keyhole channel model approximates well the relay channel in the amplify-and-forward mode in certain scenarios, these results also apply to the latterComment: accepted by IEEE IT Trans., 201

    Diversity-Multiplexing Tradeoff via Asymptotic Analysis of Large MIMO Systems

    Full text link
    Diversity-multiplexing tradeoff (DMT) presents a compact framework to compare various MIMO systems and channels in terms of the two main advantages they provide (i.e. high data rate and/or low error rate). This tradeoff was characterized asymptotically (SNR-> infinity) for i.i.d. Rayleigh fading channel by Zheng and Tse [1]. The asymptotic DMT overestimates the finite-SNR one [2]. In this paper, using the recent results on the asymptotic (in the number of antennas) outage capacity distribution, we derive and analyze the finite-SNR DMT for a broad class of channels (not necessarily Rayleigh fading). Based on this, we give the convergence conditions for the asymptotic DMT to be approached by the finite-SNR one. The multiplexing gain definition is shown to affect critically the convergence point: when the multiplexing gain is defined via the mean (ergodic) capacity, the convergence takes place at realistic SNR values. Furthermore, in this case the diversity gain can also be used to estimate the outage probability with reasonable accuracy. The multiplexing gain definition via the high-SNR asymptote of the mean capacity (as in [1]) results in very slow convergence for moderate to large systems (as 1/ln(SNR)^2) and, hence, the asymptotic DMT cannot be used at realistic SNR values. For this definition, the high-SNR threshold increases exponentially in the number of antennas and in the multiplexing gain. For correlated keyhole channel, the diversity gain is shown to decrease with correlation and power imbalance of the channel. While the SNR-asymptotic DMT of Zheng and Tse does not capture this effect, the size-asymptotic DMT does.Comment: To appear in 2007 IEEE International Symposium on Information Theory (ISIT 2007), Nice, June 200

    Normal zone in YBa2Cu3O6+xYBa_2Cu_3O_{6+x}-coated conductors

    Full text link
    We consider the distribution of an electric field in YBCO-coated conductors for a situation in which the DC transport current is forced into the copper stabilizer due to a weak link -- a section of the superconducting film with a critical current less than the transport current. The electric field in the metal substrate is also discussed. The results are compared with recent experiments on normal zone propagation in coated conductors for which the substrate and stabilizer are insulated from each other. The potential difference between the substrate and stabilizer, and the electric field in the substrate outside the normal zone can be accounted for by a large screening length in the substrate, comparable to the length of the sample. During a quench, the electric field inside the interface between YBCO and stabilizer, as well as in the buffer layer, can be several orders of magnitude greater than the longitudinal macroscopic electric field inside the normal zone. We speculate on the possibility of using possible microscopic electric discharges caused by this large (∼\sim kV/cm) electric field as a means to detect a quench.Comment: 8 pages, 4 figure

    Dedication

    Get PDF

    Pollination (in Growing Alfalfa for Seed)

    Get PDF

    Distance From the Apiary as a Factor in Alfalfa Pollination

    Get PDF
    Experiments conducted in northern Utah indicated that the distribution of honey bees (Apis mellifera L.) on an alfalfa field is modified by various influences besides distance from the colonies. Because of these other factors, generalizations concerning the effect of distance from colonies on the distribution of foraging honey bees cannot be made on the basis of experiments herein reported. A slight negative relationship between bee populations and distance from colonies in alfalfa fields was found in some of the experiments reported. In two fields where the distance was less than 600 feet, horizontal stratification of the field population was found only in the one with an average population of over two bees per square yard. The other field had less than one bee per square yard and no significant changes in population were observed up to 550 feet from the apiary. In another location bee populations decreased beyond 3,000 feet, but other variable factors on the field made it impossible to attribute these decreases solely to increasing distance from the apiary
    • …
    corecore